【張偉豪專欄】SPSS多變量方法中,單變量常態與多變量常態的檢定

有以下問題想要詢問老師

1.常態分配
(1) 是否能用SPSS來證明常態分配,但是用SEM進行驗證分析?
(2) 偏態跟峰度是看CR值還是SKEW及KURTOSIS值呢?
(目前看到的書籍是兩者解釋皆有,且判斷的數據皆不太相同…)
(3) 偏態跟峰度值的呈現是要以構面為主或是題項為主?
(因為有些文章會顯示不同構面的偏態跟峰度,但是sem中主要乃是顯示題項,因此不是很能理解究竟是用哪個值來判斷構面的偏態跟峰度?)

2.多元常態檢定
(1) 以老師書中的標準,目前kurtosis=90.481 cr=23.976 乃不符合標準,但是參照老師書中92頁的內容,似乎以目前極端值的值來看彼此間的差異性不大,因此不確定是否需要刪題,還須請老師指導!

 

張偉豪老師解答:

1.常態分配可以用SPSS來做,但是只能評估單變量常態。此外也可以用散佈圖,來評估兩兩變數的多元常態.。但是所有變數的多元常態,一定要用amos中的Mardias 檢定來檢查.。
2.偏態及峰度不看C.R.值,因為C.R.值會受到樣本數的影響。因此是看偏態 <2及峰度 <7,符合這兩個標準則稱具有單變量常態。
3.偏態指的當然是變數為主,只有變數本身才有值可以分析。潛在變數是我們假設的構面,其中包含許多題目,所以我們估計多元常態.。
4.SEM中有個Multivariate kurtosis的分析,那是多元常態的分析。一般Multivariate kurtosis的cr值在49.1以內,大致上在ML法中都可以接受。
5.刪不刪題是研究者主觀意識,並無絕對標準,可以自行判斷。

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。